webinar register page

Webinar banner
Methodological Blind Spots in Machine Learning Fairness: Lessons from the Philosophy of Science and Computer Science
In the ML fairness literature, there have been few investigations through the viewpoint of philosophy, a lens that encourages the critical evaluation of basic assumptions. The purpose of this paper is to use three ideas from the philosophy of science and computer science to tease out blind spots in the assumptions that underlie ML fairness: abstraction, induction, and measurement. Through this investigation, we hope to warn of these methodological blind spots and encourage further interdisciplinary investigation in fair-ML through the framework of philosophy.

Jun 22, 2020 12:00 PM in Montreal

Webinar is over, you cannot register now. If you have any questions, please contact Webinar host: SEMLA 2020.